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With the development of technologies such as multimedia technology and information technology, a great deal of video data is
generated every day. However, storing and transmitting big video data requires a large quantity of storage space and network
bandwidth because of its large scale. Therefore, the compression method of big video data has become a challenging research
topic at present. Performance of existing content-based video sequence compression method is difficult to be effectively
improved. Therefore, in this paper, we present a fractal-based parallel compression method without content for big video data.
First of all, in order to reduce computational complexity, a video sequence is divided into several fragments according to the
spatial and temporal similarity. Secondly, domain and range blocks are classified based on the color similarity feature to reduce
computational complexity in each video fragment. Meanwhile, a fractal compression method is deployed in a SIMD parallel
environment to reduce compression time and improve the compression ratio. Finally, experimental results show that the
proposed method not only improves the quality of the recovered image but also improves the compression speed by compared
with existing compression algorithms.

1. Introduction

With the rapid development of the Internet and intellectual
mobile terminals, multimedia video and image applications
are becoming more and more widespread. Video data is
ubiquitous and plays a critical role in all aspects of people’s
lives, including urban security, medical care, education, com-
munications, industrial production, and film and television.
Since video applications generate massive amounts of video
data every moment, the amount of global video data has
exploded quickly [1]. Big video data do not only broaden
the horizon of human beings, and enable us to better experi-
ence and recognize the world around us, but also have buried
a large amount of valuable information waiting for explora-
tion [2].

In order to effectively store and manage big video data,
efficient video compression technology has become crucial.
The purpose of video compression is to ensure that the video
compression ratio is maximized while maintaining a certain
image quality [3]. Video compression technology has been
widely used today, such as digital cameras, USB cameras,
video phones, video on demand, video conferencing systems,
and digital surveillance systems.Meanwhile, many video cod-
ing methods including fractal coding have been improved,
and some coding techniques have been applied to video cod-
ing standards [4].

Existing content-based video compression methods have
reached bottlenecks. However, rule-based fractal image
compression technology is a potential image compression
method. Its potentially high compression ratio characteristic
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has made it subject to attention of many scholars [5]. Fractal
image compression technology converts a digital image into a
set of contractive affine transformations (CAT) according to
self-similarity of the image, and parameters of CAT of the
image are stored as a compression file [6]. Moreover, a corre-
sponding decompression process is very simple to suit the
situations where an image is compressed once and decom-
pressed many times, such as video on demand.

However, the traditional fractal video compression
method performs frame-by-frame compression on the entire
video without considering spatial-temporal similarity, which
causes a lot of computational redundancy [7]. Moreover,
since each range block is matched with all domain blocks,
such a large amount of calculation leads to a high computa-
tional complexity. Therefore, the existing fractal compression
method is underutilized.

In this paper, we propose a novel fractal video compres-
sion method. First, an entire video is divided into several
fragments according to the spatial-temporal similarity of
video frames. Each fragment contains several similar video
frames. Secondly, we classify range and domain blocks
according to their color similarity feature in each subfrag-
ment. Meanwhile, in order to compress real-time big video
data, we propose a video compression framework with a
dual-layer parallel structure. In the first layer of the parallel
structure, the central server allocates all video fragments to
multiple processors averagely for parallel compression. In
the second layer, the processor allocates all kinds of range
and domain blocks to multiple computing nodes for simulta-
neous matching search.

The rest of the paper is organized as follows. Section 2
reviews related work on video compression methods and
fractal image coding. Section 3 presents our proposed par-
allel fractal compression method for big video data and
analyzes its computational complexity. In Section 4, in
order to verify the effectiveness of the proposed method,
the traditional fractal compression method and some
recent image compression methods are used as compari-
sons. Experimental results show the effectiveness of our
method. Finally, Section 5 concludes our work and
describes the direction of future research.

2. Related Works

2.1. Video Sequence Compression Method. Since the 1980s,
video coding technology has developed rapidly and has
been a hot research field soon. In March 2003, two interna-
tional organizations for standardizations ISO/IEC and ITU-
T jointly developed the video coding standard H.264/AVC
[8]. H.264/AVC achieved good results in many aspects such
as coding efficiency, image quality, network adaptability,
and error resistance. However, its coding algorithm had a
high degree of complexity [9]. After years, many new tech-
nologies such as motion compensation, transformation,
interpolation, and entropy coding had demonstrated their
superiority. Therefore, ISO/IEC and ITU-T jointly devel-
oped a new video coding standard, H.265/HEVC [4], in
November 2013.

The video coding standard defined a syntax and semantic
constraint decoder of code streamwith open-ended encoders.
Therefore, in order to further improve compression effi-
ciency, coding technology is perfected on the premise of con-
forming to constraint of code stream [10]. The existing
research on coding optimization mainly focused on two
aspects. One was how the coding efficiency can be further
improved; the other was how the coding complexity can be
effectively reduced.

In order to improve coding performance, HEVC defined
35 intraprediction directions and advanced interframe
interpolation techniques with spatial correlation of images
[11]. Zhang et al. proposed a method for the recombina-
tion and prediction of the reference frame with back-
ground modeling [12]. It effectively allocated resources
and improved coding performance. Ugur et al. proposed
an adaptive filtering technique. The design of interpolation
and deblocking filter improved coding efficiency [13]. Seo
et al. proposed a rate control method to maximize coding
efficiency [14].

The above methods mainly eliminated redundancy by
adding a large number of coding modes, optimization
parameters, and traversal searching techniques. Since the
compression ratio and time can be improved by mining the
visual redundancy in video, Zhang et al. proposed a block-
adaptive residual preprocessing method based on the stereo-
scopic visual JND (just notice difference) model [15]. It effec-
tively reduced unnecessary perceived redundancy without
degrading visual quality. Luo et al. proposed an alternative
perceptual video coding method to improve the existing
H.264/advanced video control (AVC) framework, which
achieved significant bit savings while maintaining visual
quality [16]. By combining video coding with visual percep-
tion, Wang et al. proposed a game-based efficient coding
method and a bit allocation method, which effectively
improved network adaptability and coding efficiency [17].

The compression algorithm of HEVC had a high com-
plexity because many technologies were introduced in it,
such as hierarchical variable-size coding units, multiscale
prediction units, transform units, and multireference frame
motion estimation. Thus, Guo et al. proposed a method to
reduce the computational complexity of video compression
standards [18]. It included an intraframe and a chroma
search algorithm, which accelerated the prediction process
of luminance and chromaticity macroblocks. Potluri et al.
introduced a new 8-point DCT approximation that required
14 additions without multiplication [19]. Pan et al. proposed
an efficient motion and disparity estimation algorithm to
reduce the computational complexity of multiview video
coding [20].

Today, content-based video compression technologies
made it difficult to getmajor breakthroughs.Most of the exist-
ing video compression methods improve the compression
quality by increasing the computational complexity of encod-
ing. The computational complexity of existing video com-
pression methods is generally high due to a large number of
parameters and mathematics that need to be calculated.
Therefore, this research direction is to build an efficient cod-
ing framework. The method we proposed better balances

2 Complexity



www.manaraa.com

the relationship between computational complexity and
image quality.

2.2. Fractal Image Compression. Fractal image compression
was a compression method by CAT [21]. It was first pro-
posed by Barnsley and Hurd in the mid-1980s according to
the mathematical theory of fractal geometry. Then, Jacquin
divided a coded image into small pieces of equal size and
explored the mapping relationship between these small
pieces [22]. Fractal image coding has advantages such as high
compression ratio and independence from resolution. How-
ever, its compression time is very long because each range
block needs to be searched with all domain blocks. The key
of acceleration in fractal coding is a well-designed search
scheme. At present, improvement of a fractal coding algo-
rithm is mainly divided into two directions, which are sub-
block classification and neighborhood search.

The sub-block classification method classifies image sub-
blocks according to a certain characteristic. Thus, intragroup
search is used to replace global search during matching. Jac-
quin divided image blocks into shade blocks, edge blocks, and
midrange blocks according to visual geometry [23]. Jacobs
et al. proposed a more refined classification method to obtain
72 types of sub-blocks by classifying image sub-blocks based
on gray mean and variance [24]. Jiang et al. applied the K
-means clustering algorithm into fractal image compression
to cluster range and domain blocks [25]. Jaferzadeh et al.
used pixel space and 1D-DCT vectors to implement fuzzy
clustering, which improved the speed of compression with
equal decoding quality [26]. Wu et al. divided domain blocks
into simple blocks and complex blocks [27]. In order to
shorten the compression time, only complex blocks are
coded. However, a simple block is stored by its pixel mean
and coordinates of the upper left corner.

Assuming that positions of optimal matching domain
blocks are often concentrated near the range block, the neigh-
borhood searchmethod refers to searching its optimalmatch-
ing block only in the neighborhood of a range block, which
narrows the search range from global to local search [28].
Chong et al. proposed an improved formula for prequan-
tized nearest neighborhood search, which was based on
orthogonal projection and fractal transform parameters
[29]. In addition, they derived an optimal adaptive scheme
for approximating search parameters to improve the
performance of the algorithm. Truong et al. proposed a
new search strategy based on spatial correlation of images
[30]. Lin et al. implemented a neighborhood search by uti-
lizing a phenomenon that similarly edge-shaped blocks are
concentrated in certain regions [31]. Wang et al. calculated
and sorted the standard deviation of domain blocks. Each
range block was limited to search for domain blocks with
similar standard deviation [32].

Searching for the optimal matching block in the neigh-
borhood of a range block speeds up the compression process,
but ultimately results in a larger pixel difference between the
decoded image and the original image. This strategy trades
for shorter compression times at the expense of image qual-
ity. The proposed method uses the idea of classification to
narrow the matching range of range blocks while ensuring

image quality. Although there are many classification
methods, the method we proposed has a lower calculation
amount and its speed is satisfactory.

3. The Proposed Fractal Compression Methods

3.1. Traditional Fractal Compression Method for Video
Sequence. The traditional fractal compression method for
video sequence performs frame-by-frame compression on
the entire video. In the traditional method, an image f is
divided into nR nonoverlapping blocks R1, R2,… , RnR

(range
block) with the same size.

Assuming that the size of f isM ×M and the size of Ri is
N ×N , a 2N × 2N interception window is used to traverse
along horizontal and vertical directions of f by a given step
δ. Each movement of the interception block constitutes a
domain block. All nD blocks constitute a search space SD =
D1,D2,… ,DnD

, where Dj is the j − th domain block. It is

obvious that nR = M/N 2 and nD = M − 2N/δ + 1 2.
For each domain block Dj, the mean of four neighboring

pixels generates an N ×N pixel block Dj′.
Then, eight isometric transformations are performed on

SD′ = D1′,D2′,… ,DnD
′ to generate codebook Ω of matching

operation.
For an arbitrary range block Ri, the optimal matching

block Dj′ is determined by 1, where tk ∈ t1,… , t8 are eight
isometric transformations. si and oi are parameters of affine
transformation.

d Ri,Wi Dj′ =min Ri − si · tk Dj′ + oi
2

1

Equations 2 and 3 are used to calculate si and oi, where
ri and dj represent the mean intensity of block Ri and Dj′,
is the inner product in the Euclidean space, and stands
for 2-Norm. I is an identity matrix with the same size as
Ri and Dj′.

si =
Ri − ri · I,Dj′ − dj · I

Dj′ − dj · I
2 , 2

oi = ri − si · dj 3

For each range block Ri, the transform cluster Wi xj,
yj, ti, si, oi obtained by 1 is its fractal code, where xj, yj
represents the location of Dj′.

The computational complexity of the traditional fractal
compression algorithm is given by Lemma 1.

Lemma 1. The computational complexity of traditional fractal
image compression algorithm is O M4/N2 .

Proof. In the traditional fractal image compression method,
searching for the optimal matching Dj for each Ri requires
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a global search of codebook Ω. The total number of range
blocks nR and domain blocks nD is shown in 4.

nR =
M
N

2
,

nD = M − 2N
δ

+ 1
2

4

Each range block Ri must be searched for the optimal
self-similar Dj by comparing nD times with all domain
blocks. The number of comparisons Tcom to complete com-
pression is given by 5.

Tcom = M
N

2
× 8 × M − 2N

δ
+ 1

2
=O

M4

N2 5

Based on the discussion above, Lemma 1 is proved. Proof
is finished.

3.2. The Proposed Fractal Video Sequence Compression
Method. There are two drawbacks of traditional fractal video
compression. First, spatial-temporal similarity is not consid-
ered in the frame-by-frame compression method. Second,
using the global search method to find the optimal matching
block results in a long compression time. Therefore, we
propose a novel video sequence compression method. Our
method is divided into two steps. First, the video sequence
is divided into video fragments according to spatial-
temporal similarity. Second, domain and range blocks are
classified based on color similarity feature within each frag-
ment. A compression flow chart is shown in Figure 1. We
explain steps to fragment the video in Section 3.2.1 and
describe the steps to classify domain and range blocks in
Section 3.2.2.

3.2.1. Video Content Classification Based on Spatial-
Temporal Similarity. Video data is an unstructured data
that has both temporal and spatial properties. Before it is
compressed, video data may be processed and structured
according to spatial-temporal similarity. Therefore, we frag-
ment the video sequence based on image content. Figure 2
shows three video fragments that belong to the same video
sequence “Jogging” [33]. Each row represents a fragment.
There are large differences in video frames between different
fragments. In a fragment, the difference between sequential
frames is small.

According to the similarity of video content, we use the
color histogram method to fragment a video. The HSV color
model is selected in this paper, as shown in Figure 3. The
HSV color model is composed of three components, which
are H (hue), S (saturation), and V (value). The human eye
has different sensitivities to the three components. Therefore,
the weights of the three components are modified to save
storage space and reduce computational complexity.

H, S, and V are divided into a, b, and c intervals, respec-
tively. According to this quantization level, each color

component is synthesized as a G-dimensional feature vector
by 6.

G = a − 1 · b · c + b − 1 · c + c − 1 + 1 6

Similarity of histograms will be accurately calculated
by 7, where P = p1, p2,… , pG and Q = q1, q2,… , qG
represent color feature vectors of frames P and Q.

d P,Q = 1 − ∑G
i=1 pi · qi

∑G
i=1pi · ∑G

i=1qi

7

A large change occurs between the two frames P and
Q if d P,Q is larger than a certain threshold T . There-
fore, P and Q are divided into different video fragments by

P,Q ∈ Vi, d P,Q ≤ T ,
P ∈ Vi,Q ∈ Vi, otherwise

8

Finally, the entire video V is divided into n video frag-
ments V =⋃n

i=1Vi , where each video fragment Vi contains
ui frame images f i,j: Vi =⋃ui

j=1 f i,j.

3.2.2. Video Fragment Compression Method Based on
Color Similarity. In order to accelerate the fractal com-
pression speed and improve the decoding quality of
image, we combine sequential video frames into a whole
image matrix to classify domain blocks in each video
fragment Vi.

Figures 4(a) and 4(b) are two frames in the same video
sequence. Block 1 is Ri of Figure 4(a). In the traditional
frame-by-frame video compression algorithm, block 2 is the
optimal-matching domain block Dj of Ri in Figure 4(a).
However, block 3 in Figure 4(b) is Dj of Ri by the proposed
method. The mean squared error (MSE) is calculated by 9,
where n2 is the number of pixels of the image. Xi,j and
Yi,j , respectively, represent the gray value of images X and
Y at position i, j . Block 3’s MSE is 193, and block 2’s
MSE is 351. Therefore, block 3 is better than block 2.

MSE = 1
n2

〠
n

i=1
〠
n

j=1
Xi,j − Yi,j

2 9

Matching error E R,D 2 of two image blocks R and D is
calculated by 10, where the definition of r, d, and I is the
same as that in 2 and 3.

E R,D 2 = R − r · I 2 −
R − r · I,D − d · I 2

D − d · I 2 10

Theorem 1. For two matrices D and R with the same size,

E R,D 2 ≥ D − d · I 2 − b2i /
ai · D − d · I + bi · R − r · I 2

, where ai and bi are any
unit in matrix a = R − r · I and b =D − d · I.
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Proof. Let R − r · I = a,D − d · I = b, 10 is described as

E R,D 2 = a 2 · b 2 − a, b 2

b 2 11

Build 12 and 13, where n is the total number of pixels of R
and D.

X′ = −
bi
b 2 · b1, −

bi
b 2 · b2, −

bi
b 2 · b3,… , 1 − bi

b 2 · bn , 12

Collaging

Video sequences

Tore fractal codes

Choose the best
domain block
with the least

MSE value

Calculate the MSE
value between

range and
domain block

Transforming

Selecting

Shrinking ClassifyingRange block

Domain block

Figure 1: The proposed fractal compression process.

Figure 2: Video fragments of “Jogging.”

H
S

Magenta

Red

Yellow

V

Green

Cyan

Blue

Figure 3: HSV color model.
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λ = b, b
ai · b, b − bi · a, b 13

Thus, X = λX′ satisfies b, X = 0 and a, X = 1; we have

E R,D 2 = a 2 · b 2 − a, b 2

b 2 ≥ X 2 14

Therefore, by 12 and 13, 11 is described as follows:

E R,D 2 ≥ λX′, λX′ = 1
ai · b, b − bi · a, b 2

· 〠
n−1

j=1
b2nb

2
i + b, b − bibn

2

= b 2 − b2i
ai · b / a − bi · a, b / b · a 2 · a 2

≥
b 2 − b2i

ai · b / a + bi
2 · a 2

= D − d · I 2 − b2i

ai · D − d · I + bi · R − r · I 2

15

Based on the discussion above, Theorem 1 is proved.
Proof is finished.

Let GA = D − d · I 2 − b2i / ai · D − d · I + bi · R − r ·
I 2; E R,D 2 between Dj1′ and Dj2′ with Ri is approximated
by calculatingGA. Meanwhile, ai and bi are replaced by mean
gray values of gray matrices a and b. Assuming that GA Ri,
Dj1′ , GA Ri,Dj2′ is smaller than a certain value σ. Then, G
A Dj1′,Dj2′ is not much different. Therefore, we classify
domain blocks by an automatic classification method accord-
ing to Theorem 1.

The mean gray value DA = hA1, hA2,… , hAN×N of all
remaining domain blocks is calculated by 16 as the initial
cluster center of the i − th category of domain blocks,
where n is the number of domain blocks and hn k,l rep-
resents the gray value of the n − th domain block at
position k, l .

hA k,l =
1
n

h1 k,l + h2 k,l +⋯ + hn k,l 16

The distance between range block Ri and center c1
, c2,… , cm is calculated by 17, where hRi k,l and hcj k,l
represent the gray value of Ri and the j − th center cj
at position k, l , respectively.

dis Ri, cj =
∑N

k=1∑
N
l=1 hRi k,l − hcj k,l

2

N ×N
17

A matching search is performed between each cate-
gory of range blocks and the same category of domain
blocks, such as CRi is matched with CDi. A matching
process between different categories of range blocks is
performed independently.

The computational complexity of the proposed algorithm
is given by Theorem 2.

Theorem 2. The computational complexity of the proposed
algorithm is O M4/N2m2 .

Proof. Assuming that all domain blocks are uniformly classi-
fied into m categories. Correspondingly, range blocks are
classified into m categories. The number of each category of
domain blocks CD and range blocks CR is given by

CD = M − 2N/δ + 1 2

m
,

CR =
M/N 2

m

18

Each category of range blocks only needs to be matched
with its corresponding domain category. The times of com-
parisons Tcom within each category is shown by 19.

Tcom = M
N

2
× 8 × M − 2N

δ
+ 1

2
× 1

m2 =O
M4

N2m2

19

Based on the discussion above, Theorem 2 is proved.
Proof is finished.

1

2

(a)

3

(b)

Figure 4: Combinatorial compression.
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Since the matching range for each range block is nar-
rowed down to one ofm categories of domain blocks, instead
of traditional global search, theoretically the compression
speed of the proposed algorithm is m times as fast as the tra-
ditional algorithm. In order to improve the compression
speed obviously, normally m≪ M − 2N/δ + 1 2.

Inference 1. Thecompression speedof theproposed combined
algorithm is m′/f times as fast as the traditional algorithm.

Proof. Assuming that the time required to compress a single
frame by the traditional algorithm is t. All domain blocks
are divided into m′ categories when f frames are combined
to compress integrally. Correspondingly, all range blocks
are divided into m′ categories.

The mean time required to compress the f frame is t · f
/m′. Therefore, the compression time of the proposed

combined algorithm is t · f /m′ · f . However, the time
required to compress the f frame by the traditional algorithm
is t · f .

Based on the discussion above, Inference 1 is proved.
Proof is finished.

Inference 1 indicates that the compression speed of the
proposed combined algorithm is determined by two factors.
One is the number of combined images and the other is the
class number of domain blocks. How to balance these two
factors is related to compression time and image quality.

3.3. Parallel Framework for Big Video Data Compression.
Parallel computing lay the foundation of methodology for
the solution of complex problems. Considering the compres-
sion of each video fragment without affecting each other and
that the matching search between range blocks of different
categories is independent of each other, the proposed algo-
rithm is deployed on a parallel architecture of SIMD to

Classification Algorithm of Domain and Range Blocks (one frame e.g.,).
Input: nD domain blocks and nR range blocks.
Output:domain block categories CD1, CD2 ⋯ CDm and range block categories CR1, CR2 ⋯ CRm
Set: the number of categories m and a set of threshold sequences σ1, σ2,⋯, σt
Repeat

Mean gray value DA = hA1, hA2,⋯, hAN×N of n remaining domain blocks is calculated by Eq.16;
σp is the median of threshold sequence σ1, σ2,⋯, σt ;
ω = 0;
Repeat

Remove a domain block Dj′ from D1′,D2′,⋯,Dn′ ;

GA between DA and Dj′ is calculated;
If GA ≤ σp then

ω = ω + 1;
Dj′ ∈ CDi;

End
Until Each domain block of D1′,D2′,⋯,Dn′ is compared;
If ω≫ nD/m then

σp = σp+1;
ω = 0;
Perform previous “Repeat” step, until ω − nD/m ≤ 10log10 nD −1;

End
If ω≪ nD/m then

σp = σp−1;
ω = 0;
Perform previous “Repeat” step, until ω − nD/m ≤ 10log10 nD −1;

End
The i-th category of domain blocks CDi is determined;

Until nD domain blocks are classified and CD1, CD2 ⋯ CDm are got;
Center c1, c2 ⋯ cm of s categories of domain blocks are obtained by Eq.16;
Repeat

Remove a range block Ri from R1, R2 ⋯ RnR
;

Distance dis Ri, c between Ri and center c1, c2 ⋯ cm are calculated by Eq.17;
Select the smallest distance dis Ri, cj ;
Ri ∈ CRi;

Until nR range blocks are classified and CR1, CR2 ⋯ CRm are got;

Algorithm 1
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improve its efficiency. Thus, a double-parallel video com-
pression framework is built as shown in Figure 5. In the
first layer of the parallel framework, all video fragments
are allocated to multiple processors. In the second layer,
all kinds of range and domain blocks are allocated to mul-
tiple computing nodes.

Speed-up ratio and parallel efficiency were used to mea-
sure the performance of the parallel algorithm. Their defini-
tions in this paper are shown by Lemma 2.

Assume that A contains f frames and it is divided into n
fragments. All range blocks and domain blocks are classified
into s categories in each fragment. Compression is deployed
in a parallel environment of p processors with c compute
nodes per processor.

Lemma 2. Speed-up ratio Sp A of the parallel algorithm is
p · c · s · n/f , and its parallel efficiency is Sp A · f /p · c · s · n.

Proof. The speed-up ratio is defined as in 20, where ts A is
the time required to compress video sequence A by the tradi-
tional fractal compression method and tp A is the time
required by the parallel method.

Sp A = ts A
tp A

20

Let ts A = T · f , the time required of each fragment is
T · f /n.

Because each processor gets n/p fragments, the time
required of each processor is n/p · T · f /n = T · f /p.

After range blocks and domain blocks are classified and
allocated to compute notes, the time required of each proces-
sor is reduced to T · f /p · 1/s · c = T · f /p · s · c.

Because each fragment contains f /n frames, the compres-
sion time is T · f /p · s · c · f /n = T · f 2/p · s · c · n.

Thus, speed-up Sp A = T · f / T · f 2/p · s · c · n = p · s ·
c · n/f .

Parallel efficiency is defined as in 21, where Sp′ A is an
absolute parallel speed-up without s · n /f resulting from
the classification of domain and range blocks, and p A is
the number of compute nodes.

Ep A =
Sp′ A
p A

21

Since Sp′ A = Sp A · f /s · n and p A = p · c, parallel effi-
ciency Ep A = Sp A · f /p · c · s · n.

Based on the discussion above, Lemma 2 is proved. Proof
is finished.

The amount of computation for compressing arbitrary
video data based on a serial algorithm is considerably large.
Compared with the traditional serial algorithm, the more
the number of processors, the higher the unit calculation effi-
ciency and the higher the parallel computing efficiency.
However, it is necessary to consider the actual situation of
computing resources and the number of video segments
and the class number of domain blocks.

Theorem 3. The computational complexity of parallel algo-
rithm is O f /p ·M4/N2 · c2/s2 .

Proof. According to Theorem 2, the computational com-
plexity of a single frame is O M4/N2m2 , where m repre-
sents the category number of domain and range blocks.

Proposed Fractal Video Sequence Compression Algorithm
Input:video sequence
Output:fractal code of video sequence
Repeat

Take out sequential m frames of images in the video sequence f1, f2,⋯, f m and combine them into a large image matrix F for
holistic compression. Divide F into non-overlapping N×N range blocks;

A 2N× 2N window with a step size of δ is used to intercept domain block along F;
Domain blocks are contracted by mean of neighboring four pixels;
According to Algorithm 1, domain blocks are classified and the corresponding range block categories are obtained;
Repeat

Remove a range block Ri from the p-th range block category and set an initial value Error;
Repeat
Remove a domain block Dj from the p-th domain block category, perform eight isometric transformations, and calculate s,

o, E2 R,D according to Eqs.2–3 and Eq.10;
If E2 R,D < Error then

Replace Error with E2 R,D ;
End
Until All domain blocks in the p-th domain block category are completely searched;
Store fractal code xj, yj, ti, sioi of range block Ri;

Until All range block categories have been matched with their corresponding domain block category;
Store fractal code of the entire image F;

Until The entire image sequence is compressed and fractal codes of it is obtained.

Algorithm 2

8 Complexity
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Therefore, the computational complexity of the parallel
algorithm is O f p ·M4/N2 · 1/m2

c , where f p is the number
of video frames assigned to each processor and mc is the
class number of range and domain blocks assigned to each
compute node. In this parallel environment, f p = f /p and
mc = s/c.

Based on the discussion above, Theorem 3 is proved.
Proof is finished.

Compared with the computational complexity O f /p ·
M4/N2 · c2/s2 of the parallel method we proposed, the
computational complexity of the traditional serial method
is p · s2/c2 times as much as it. A reasonable allocation
of p, s, and c values can improve parallel efficiency while
reducing computational complexity.

4. Experiments and Analysis

In this paper, experiments are performed on the computer
with an Intel Core i5-4590 CPU and a 12GB memory, and
the operating environment is Matlab 2016a. Three standard
grayscale image sequences are used, which were Walter
Cronkite moving head, chemical plant flyover (close view),
and chemical plant flyover (far view) [34]. They are renamed

to Seq1, Seq2, and Seq3, respectively. The image size is
256× 256× 8 bit. The proposed algorithm is compared with
the traditional fractal video sequence compression algorithm
from three aspects, which are comparison of single-frame
image compression, comparison of sequential frame com-
pression, and comparison of the traditional serial method
with the proposed parallel method. In these experiments,
the range block has size 4× 4, the domain block has size
8× 8, and both horizontal step and vertical step are 1. Finally,
the range block with size 8× 8 and the domain block with size
16× 16 are added to the experiment when compared with the
AVQIS algorithm [35].

In this paper, a parallel environment consisting of one
manager and four processors with four compute nodes each
processor is constructed when the traditional serial algorithm
is compared with the parallel algorithm. First, the central
server fragments the entire video sequence according to its
spatial-temporal similarity and sequentially distributes it to
processors numbered 1–4 for compression. Then, all range
and domain blocks are automatically classified within the
video fragment and assigned to four compute nodes for inde-
pendent work.

We evaluate the quality of the decoded image by calcu-
lating 22. The peak signal-to-noise ratio (PSNR) is the log-
arithm of the mean square error (MSE) between the
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Figure 5: Parallel framework.
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original image and the decoded image relative to 2n − 1 2,
where 2n − 1 represents the upper limit of the gray level
and n is the storage bit of each pixel. The higher the PSNR
value, the lesser the distortion.

PSNR = 10 × log10
2n − 1 2

MSE 22

Meanwhile, we use the compression ratio (CR) to mea-
sure compression performance by comparing with the
AVQIS algorithm. The compression ratio is defined as the
ratio of the original data to the compressed data in 23,
where H represents the number of range blocks and 8, 8,
3, 5, 7 represents the quantization level of fractal parame-
ters xj, yj, ti, si, oi .

CR = 256 × 256 × 8
H × 8 + 8 + 3 + 5 + 7 23

4.1. Comparison of Single-Frame Image Compression. Four
sequential frames of Seq1, Seq2, and Seq3 are selected to
perform frame-by-frame compression. The mean compres-
sion time and PSNR of 4 frames are calculated. The thresh-
old sequence is shown in Table 1. With the automatic

classification method, domain blocks were divided into 10
categories. Correspondingly, range blocks were divided into
10 categories. Restored images obtained by the traditional
method and proposed method are shown in Table 2. The
experimental data is shown in Table 3.

From Tables 2 and 3, it can be seen that the quality of
reconstructed images obtained by the proposed algorithm
and traditional algorithm is not obviously different from
being uncompressed. It indicates that the proposed algo-
rithm is feasible. Moreover, compared with the traditional
fractal compression algorithm, although PSNR of the pro-
posed algorithm is slightly decreased, the compression
speed is 8~9 times as fast. According to Theorem 2 and
its analysis, since range and domain blocks are divided
into ten categories, the compression speed should theoret-
ically increase by a factor of ten. Because classification of
domain and range blocks is nonuniform, the speed-up
ratio of the proposed method is lower than the theoretical
value of 10.

4.2. Comparison of Sequential Frame Compression. First, 4
sequential frames of Seq1, Seq2, and Seq3 are compressed
by the traditional fractal method. Second, they are com-
pressed by the proposed method frame by frame. Finally,
4 frames are combined to compress together by the pro-
posed method. The threshold sequence is shown in

Parallel Video Sequence Compression Algorithm Based on Fractal
Input:video sequence
Output:fractal code of video sequence
Fragment: n video fragments V =∑n

i=1Vi are allocated to multiple processors for compression, which are divided according to the
spatial–temporal similarity of video sequence.

Classify:Combine ui frames f i,j Vi =∑ui
j=1 f i,j contained in video fragment Vi into a large image matrix F for overall compression;

Divide F into non-overlapping N×N range blocks;
A 2N× 2N window with a step size of δ is used to intercept domain block along F;
Domain blocks are contracted by mean of neighboring four pixels;
According to Algorithm 1, domain blocks are classified and the corresponding range block categories are obtained;
Assign all categories of range block and corresponding domain blocks to multiple compute nodes for matching search;
Repeat
Remove a range block Ri from the c-th range block category and set an initial value Error;
Repeat

Remove a domain block Dj from the c-th domain block category, perform eight isometric transformations, and calculate

s, o, E2 R,D according to Eqs.2–3 and Eq.10;
If E2 R,D < Error then
Replace error with E2 R,D ;

End
Until All domain blocks in the c-th domain block category are completely searched;
Store fractal code {xj, yj, ti, si, oi} of range block Ri;

Until All range block categories have been matched with their corresponding domain block category;
Merge: Combine the results of multiple compute nodes to obtain fractal code of video fragment Vi;

Merge:Combine the results of multiple processors to obtain fractal code of whole video V ;

Algorithm 3

Table 1: Threshold sequence.

0.000005 0.0000075 0.00001 0.000025 0.00005 0.000075 0.0001 0.00025 0.0005
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Table 1. After combination, domain and range blocks of
Seq1, Seq2, and Seq3 are divided into 20, 15, and 15 cat-
egories, respectively. The comparison of performance of
the three methods is shown in Table 4, where PSNR is
the mean of 4 frames.

From Tables 4 and 5, it can be seen that the image
quality of the decoding image obtained by the three algo-
rithms is comparable. Suppose that compressing one frame
takes time t. According to Inference 1, when 4 frames are
compressed together, the time required becomes 4t. Since
the classification of domain and range blocks can speed
up the compression process, the compression time is
reduced to 4t/m. In this experiment, domain and range
blocks of Seq1, Seq2, and Seq3 are divided into 20, 15,
and 15 categories, respectively. Therefore, the theoretical
compression speed is further reduced to 4t/20~4t/15, that
is, the theoretical value should be 3~5 times. When 4
frames are combined for compression, its compression
speed is approximately 2~4 times as fast as the traditional
algorithm, which is lower than the theoretical value of 3~5
times. It is because classification of domain and range
blocks is nonuniform.

Compared with single-frame compression, the speed-up
ratio of the combination algorithm is reduced. However, its
image quality is closer to the original image.

4.3. Comparison of Traditional Serial and Proposed Parallel
Compression. Video sequence Seq1 contains 16 frames. In
the double-layer parallel framework, the distribution of its
compression task is shown in Figure 6. Seq1 is divided into
4 video fragments. Processors numbered P1, P2, P3, and P4
get 4, 4, 4, and 4 frames, respectively. Then, all domain blocks
are divided into 20 categories, and 4 compute nodes C1, C2,
C3, and C4 obtain 5, 5, 5, and 5 categories of range blocks,
respectively. Video sequence Seq2 includes 32 frames and
Seq3 includes 11 frames. The distribution of Seq2 and Seq3
is shown in Figures 7 and 8. The threshold sequence is shown
in Table 6.

Serial computing was used in the traditional fractal video
compression method. The performance data of the tradi-
tional serial method and the parallel proposed method is
shown in Table 7. T is the whole time required of video
sequence compression. PSNR is the mean of all images
included in each video sequence.

Table 2: Comparison of decoding effects between traditional algorithm and proposed algorithm.

Sequence no. 1 2 3

Uncompressed

The traditional fractal compression algorithm

The proposed algorithm

Table 3: Comparison of performance between traditional algorithm and proposed algorithm.

Algorithm
Seq1 Seq2 Seq3

T (s) PSNR (dB) T (s) PSNR (dB) T (s) PSNR (dB)

Traditional 7939 44.71 7595 34.86 7470 33.59

Proposed 823 43.43 837 33.51 874 32.30
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Seq1 16 frames

P1 4 frames P2 4 frames

D 20 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

D 20 classes D 20 classes D 20 classes

P3 4 frames P4 4 frames

Figure 6: The distribution of Seq1.

Table 5: Comparison of performance of different strategies for the traditional algorithm and proposed algorithm.

Algorithm
Seq1 Seq2 Seq3

T (s) PSNR (dB) T (s) PSNR (dB) T (s) PSNR (dB)

Traditional 31,756 44.71 30,380 34.86 29,880 33.59

Single-frame 3292 43.43 3348 33.51 3496 32.30

Combination 8085 44.04 12,231 34.01 12,377 32.92

Table 4: Comparison of decoding effects of three algorithms.

Sequence no. 1 2 3

The traditional fractal compression algorithm

The proposed single-frame algorithm

The combination algorithm
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Seq3 11 frames

P1 3 frames P2 3 frames

D 12 classes

C1 3 classes C1 3 classes C1 3 classes C1 3 classes

C2 3 classes C2 3 classes C2 3 classes C2 3 classes

C3 3 classes C3 3 classes C3 3 classes C3 2 classes

C4 3 classes C4 3 classes C4 3 classes C4 2 classes

D 12 classes D 12 classes D 10 classes

P3 3 frames P4 2 frames

Figure 8: The distribution of Seq3.

Table 6: Threshold sequence.

0.000001 0.000025 0.000050 0.000075 0.000010 0.000025 0.000050 0.000075 0.0001

Table 7: Comparison of performance of the traditional algorithm and the proposed algorithm.

Seq Algorithm T (s) PSNR (dB) Sp A EP A

1
Serial traditional 127,034 44.74

62.42 78.03
Parallel proposed 2035 44.04

2
Serial traditional 243,055 34.84

26.55 66.38
Parallel proposed 9154 34.49

3
Serial traditional 82,175 33.58

40.56 58.09
Parallel proposed 2026 32.50

Seq2 32 frames

P1 8 frames P2 8 frames

D 20 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

C1

C2

5 classes

5 classes

C3 5 classes

C4 5 classes

D 20 classes D 20 classes D 20 classes

P3 8 frames P4 8 frames

Figure 7: The distribution of Seq2.
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Table 7 shows that under the premise of ensuring that
PSNR is comparable, the mean compression speed of the
parallel algorithm achieves more than 40 times that of the
traditional serial algorithm, and parallel efficiency averages
67%. In this experiment, the numbers of processors, com-
pute nodes, and fragments are all four, except for the num-
ber of frames and the class number of domain blocks. Video
sequences Seq1, Seq2, and Seq3 contain 16, 32, and 11
frames, respectively. The class numbers of domain and
range blocks are 20, 20, and 12, respectively. According to
Lemma 2, the theoretical acceleration ratios for the three
sequences are 80.00, 40.00, and 69.82, respectively. There-
fore, the theoretical average speed-up ratio is 63. The actual
speed-up is less than the theoretical mean speed-up of 63
times because of communication cost. In addition, since
classification of range and domain blocks is nonuniform, it
causes a difference between actual speed-up and theoretical
speed-up.

4.4. Comparison of the AVQIS Algorithm and Proposed
Algorithm. The AVQIS algorithm was proposed by Pizzolante

et al., which is an extension of the AVQ algorithm. The
algorithm utilized the correlation between sequential
frames of image sequence to perform lossy compression
on image sequence.

Table 8 shows recovery images obtained by decompres-
sing the compressed video sequence using the proposed algo-
rithm and the AVQIS algorithm. Table 9 shows CR and PSNR
obtained by compressing Seq1, Seq2, and Seq3 using the pro-
posed algorithm and the AVQIS algorithm.

From Tables 7 and 8, it can be seen that compared with
the AVQIS algorithm, the compression ratio of Seq1 is
decreased, but PSNR is obviously improved with the range
block size of 4× 4. The compression ratio of Seq2 and Seq3
is higher than that of the AVQIS algorithm. When the size
of the range block is 8× 8, the compression ratio of all
sequences is higher than that of the AVQIS algorithm.

5. Conclusions

In order to efficiently compress big video data and reduce
the computational complexity of the traditional fractal

Table 9: Comparison of performance of the proposed algorithms and the AVQIS algorithm.

Algorithm
Seq1 Seq2 Seq3

CR PSNR (dB) CR PSNR (dB) CR PSNR (dB)

Proposed (4× 4) 4.13 44.04 4.13 34.49 4.13 32.50

Proposed (8× 8) 16.52 34.99 16.52 27.56 16.52 26.36

AVQIS 9.79 31.80 2.44 33.62 2.13 33.75

Table 8: Comparison of decoding effects of proposed algorithms and the AVQIS algorithm.

Sequence no. 1 2 3

The proposed algorithm (4× 4)

The proposed algorithm (8× 8)

The AVQIS algorithm
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video compression method, a double-layer parallel video
compression framework based on fractals was proposed.
In the first layer of the parallel structure, a video sequence
was divided into many fragments according to its spatial-
temporal similarity. Then, video fragments were allocated
to multiple processors for simultaneous compression. In the
second layer, a novel fractal video compression method was
used to compress video fragments. All domain and range
blocks were classified within each fragment. Processors dis-
tributed all domain and range blocks to multiple computing
nodes for parallel processing.

Experimental results showed that compared with the
traditional fractal video compression method, the proposed
parallel method significantly improved the compression
speed when the image quality was similar. In addition, the
compression ratio was higher when compared with the
AVQIS algorithm. It verified the effectiveness of the pro-
posed method.

Future research directions will include two aspects. One
is that we will further construct new features to enhance the
calculation of video segmentation and classification of the
domain block. The other is that based on the concepts of
cloud computing and fog computing, we will strive for pro-
posing a more effective parallel fractal compression method
for real-time big video data processing.

Data Availability

Image sequences used to support the findings of this study
are publicly available at http://sipi.usc.edu/database/database.
php?volume=sequences. Three sequences consist of 16, 32,
and 11 256×256 images, respectively.
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